THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH4030 Differential Geometry 31 October, 2024 Tutorial

- 1. (From exercise 3-2.5 of [Car16]) Let S be an orientable surface and let e_1, e_2 be the principal directions of S at the point $p \in S$ with principal curvatures κ_1, κ_2 . Show the following: Hit is written everythy in the basis $\{e_1, e_2\}$ of $\{e_1, e_2\}$ of $\{e_1, e_2\}$ of $\{e_2, e_3\}$ of $\{e_1, e_2\}$ of $\{e_2, e_3\}$ of $\{e_3, e_4\}$.
 - (a) Let $v \in T_pS$ be a unit vector and let θ be the angle from e_1 to v in the orientation of T_pS . Show that the normal curvature κ_N along v is given by

$$\kappa_N = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta.$$

This is known classically as the $Euler\ formula.$

(b) Show that the mean curvature H at $p \in S$ is given by

$$H = \frac{1}{\pi} \int_0^{\pi} \kappa_N(\theta) d\theta,$$

Recell Kn at palong VETPS is given by KN = <-dNp(V), V)

where $\kappa_N(\theta)$ is the normal curvature at p along a direction making an angle θ with a fixed direction.

- 2. Show that an orientable surface S that is compact (closed and bounded) has at least one elliptic point.
- 3. Show that there exists no compact (closed and bounded) minimal surfaces in \mathbb{R}^3 . A surface is called minimal if its mean curvature H vanishes everywhere.
- 4. (Exercise 3-2.17 of [Car16]) Suppose S is a regular surface with orientation N so that $dN_p \neq 0$ for all $p \in S$. If the mean curvature H vanishes on S and S contains no planar points, show that the Gauss map $dN_p: T_pS \to T_pS$ satisfies

$$\langle dN_p(v), dN_p(w) \rangle = -K_p \langle v, w \rangle$$

for all $p \in S$ and $v, w \in T_pS$ and where K_p denotes the Gaussian curvature of S at p.

Hint i wiste everythy in the basis $\{e_i, e_i\}$ of T_pS .

- 1. (From exercise 3-2.5 of [Car16]) Let S be an orientable surface and let e_1, e_2 be the principal directions of S at the point $p \in S$ with principal curvatures κ_1, κ_2 . Show the following:
 - (a) Let $v \in T_pS$ be a unit vector and let θ be the angle from e_1 to v in the orientation of T_pS . Show that the normal curvature κ_N along v is given by

$$\kappa_N = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta.$$

This is known classically as the Euler formula.

(b) Show that the mean curvature H at $p \in S$ is given by

$$H = \frac{1}{\pi} \int_0^{\pi} \kappa_N(\theta) d\theta,$$

where $\kappa_N(\theta)$ is the normal curvature at p along a direction making an angle θ with a fixed direction.

Let
$$N=N\times T$$
, then $\{n,T,N\}$ spen $\{n\}^3$.

We can write $\chi''(0) = kgn + knN$.

 $\{n\}^3 = kgn + knN$.

 $\{n\}^3$

b)
$$\frac{1}{\pi} \int_{0}^{\pi} K_{N}(4) d\theta = \frac{1}{\pi} \int_{0}^{\pi} K_{1} \cos^{2}\theta + K_{2} \sin^{2}\theta d\theta$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \left(K_{1} \left(\frac{|+\cos(2\theta)|}{2} \right) + K_{2} \left(\frac{|-\cos(2\theta)|}{2} \right) \right) d\theta$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} (K_{1} + K_{2}) \right) = \frac{1}{2} (K_{1} + K_{2}) = H_{1}$$

2. Show that an orientable surface S that is compact (closed and bounded) has at least one elliptic point.

P. Ole empire pol

80 define F: S-> R, by F(p) = 11p112.

Since Six compact, fattains maximum at some point $p_0 \in S$. Let α be a regular cure in S S.t. $\alpha(0) = p_0$.

To by 2nd dominative test,

 $\frac{d}{dt} = f(x(t)) = 0 \implies 2 < \alpha'(0), \alpha(0), \alpha(0) = 0.$

 $\frac{d^{2}}{dt^{2}}\Big|_{t=0} + (x(t)) \le \partial \cdot = 0 < x''(0), x(0) > + (|x'(0)|| \le 0.64)$ = 0.

at po, $N_p = \frac{\alpha(0)}{N\alpha(0)N}$. Then (3k), we have

0> < x1 (0), x(0)> + (

= < d'(0), (1x(0))(Npo> + (.

So we have Np. L x'(2), 80

 $D = \frac{d}{dt} \langle \alpha'(0), N_{po} \rangle = \langle \alpha''(0), N_{po} \rangle + \langle \alpha'(0), dN_{po}(\alpha'(0)) \rangle$

 $= \langle \alpha'(0) \rangle - \partial W_{\rho_0}(\alpha'(0)) \rangle + 1$

So what we got is

 $h(\alpha'(0)) \in \frac{1}{|\alpha(0)|}$

where his the second fundamental

 $K_1 \times 1^2 + K_2 \times 2^2 \le \frac{1}{\|\alpha(0)\|} \le 0$ where α_1', α_2' are the components of $\alpha'(0)$ in the basis $\{e_1, e_2\}$ of principal directions.

So K1, K2 have some sign wel Kpo=K1K2>0.

3. Show that there exists no compact (closed and bounded) minimal surfaces in \mathbb{R}^3 . A surface is called minimal if its mean curvature H vanishes everywhere.

Pf: $H = \frac{1}{2}(K_1 + K_2)$. So if $H \ge 0$ for all p,

then K_1 , K_2 have appointe types everywhere.

But by previous quertia, there must be at least one elliptic point, E, p, where $K_1(p)$, $K_2(p)$ have Sare sign. Contradiction.

4. (Exercise 3-2.17 of [Car16]) Suppose S is a regular surface with orientation N so that $dN_p \neq 0$ for all $p \in S$. If the mean curvature H vanishes on S and S contains no planar points, show that the Gauss map $dN_p: T_pS \to T_pS$ satisfies

$$\langle dN_p(v), dN_p(w) \rangle = -K_p \langle v, w \rangle$$

for all $p \in S$ and $v, w \in T_pS$ and where K_p denotes the Gaussian curvature of S at

It. Let per Sand K1, K2 be the principal curvatures at p, with principal directions e1, e2. Since H=0 at p, =(K1+K2)=0 => K2=-K1. So Kp=K1·K2=-K12. let v, w = Tps. Write v= a, e, + azez, w= b, e, + bzez $\langle dN_{\rho}(v), dN_{\rho}(w) \rangle = \langle -dN_{\rho}(v), -dN_{\rho}(w) \rangle$ = <- dNp(a,e,+azez), -dNp(b,e,+bzez)> = < a, k, e, + a, k, e, b, k, e, + b, k, e, > = (a, K, e, -a, K, e, b, K, e, -b, k, e, > = K2 (ap-azez, bje, -bzez) = K, (a, b, ce, s,) - a, b, (e, e,) + a, b, (e, e,) + Caby (er, er) (y, w) = (a,e, +azez, b,e, +b,ez) = -Kp < V, W>./.