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1. (From exercise 3-2.5 of [Car16]) Let S be an orientable surface and let ey, e5 be the
principal directions of S at the point p € S with principal curvatures ki, ko. Show

the following: < ¢y sk uenghy e e bosis 3¢, 4 TS

(a) Let v € T,S be a unit vector and let # be the angle from e; to v in the
orientation of 7,,S. Show that the normal curvature sy along v is given by

Ky = k1 cos? 0 + ko sin? 6. QM KN 0\9\7 @
This is known classically as the Fuler formula. \ e‘tgs \\ Y‘Z‘A %
b) Show that the mean curvature H at p € S is given b
(b) p given by KN"<‘C£ \13)\[>‘
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where £y (0) is the normal curvature at p along a direction making an angle 6
with a fixed direction.
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2. Show that an orientable surface S that is compact (closed and bounded) has at least
one elliptic point.

3. Show that there exists no compact (closed and bounded) minimal surfaces in R3. A
surface is called minimal if its mean curvature H vanishes everywhere.

4. (Exercise 3-2.17 of [Carl6]) Suppose S is a regular surface with orientation N so
that dN, # 0 for all p € S. If the mean curvature H vanishes on S and S contains
no planar points, show that the Gauss map dN, : T,,5 — T,,S satisfies

<de(v), de(w)> = —Kp<v, w)

for all p € S and v,w € 7,5 and where K, denotes the Gaussian curvature of S at
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1. (From exercise 3-2.5 of [Car16]) Let S be an orientable surface and let e, e5 be the
principal directions of S at the point p € S with principal curvatures k1, k3. Show
the following:

(a) Let v € T,S be a unit vector and let # be the angle from e; to v in the
orientation of 7,,S. Show that the normal curvature sy along v is given by

KN = K1 cos? 0 + Ky sin? 6.

This is known classically as the Fuler formula.

(b) Show that the mean curvature H at p € S is given by

T
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where ky(6) is the normal curvature at p along a direction making an angle ¢
with a fixed direction.
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2. Show that an orientable surface S that is compact (closed and bounded) has at least

S one elliptic point.
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3. Show that there exists no compact (closed and bounded) minimal surfaces in R®. A
surface is called minimal if its mean curvature H vanishes everywhere.
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4. (Exercise 3-2.17 of [Carl6]) Suppose S is a regular surface with orientation N so
that dN, # 0 for all p € S. If the mean curvature H vanishes on S and S contains
no planar points, show that the Gauss map dN, : T,S — 1,5 satisfies

(ANp(v), dNp(w)) = — K, (v, w)

for all p € S and v,w € 7,5 and where K, denotes the Gaussian curvature of S at
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